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RESEARCH ON NONLINEAR DIFFERENTIAL EQUATIONS

Robert H. Martin, Jr. v//
Department of Mathematics
North Carolina State University

Raleigh, North Carolina 27607

The main topic of mathematical research investigated in this project is the
study of the existence and behavior of solutions to semilinear differential equa-
tions in Banach spaces. The principle application of these abstract techniques
is found in the study of systems of semilinear parabolic equations. The literature
generated by this project includes the published article [3]'; the submitted articles
[2], [4]; the preliminary report [6]; and the book [5].

The results of [3] characterize invariant sets for evolution systems in Banach
spaces. So let X be a real or complex Banach space with norm denoted |'| and
let D be a closed subset of X. A family U= {U(t,s) : t > s > 0} of mappings
from D into D is called an evolution system of type w (w € R) if each of

the following conditions hold:

(u1) u(t,t)x=x for all t >0, x€D.
(v2) u(t,s)u(s,r)x = U(t,r)x for all t>s>r >0, x€D.
(U3) |u(t,s)x - Ult,s)yl < |x - yle”(t's) for all t > 8 > 0, x,y € D.

(Uk) The map (t,s) + U(t,s)x of {(t,s) : ¢t > 8 >0} into X is continuous

for each x € D,

*Number: in brackets refer to the bibliography.




The principle result of this paper is

Theorem 1 [3]. Suppose that U satisfies (Ul)-(Uk) and that C is a closed suuset

of X and C € D, Then these are equivalent

(i) U(t,s) : C+>C forall t>8>0 (i.e., x€EC @and s >0 implies

that U(t,s)x € C for all t > s).

(11) inf inf 4(U(t + h, t)x; C)/h = 0 for all t >0 and x € C, where
h- 0+

d(y;C) = inf{|ly - z| : z € C} for each y € X.

Some applications of this result to the study of the behavior of sclutions to sys-
tems of semilinear parabolic problems is included in [3, 54]. Recently there has
been a (perhaps surprising) connection established between Theorem 1 (and its proof)
and a number of diverse results in nonlinear functional analysis (fixed points
theorems, normal solvebility theorems, and generalizations of the Bishop-Phelps
theorem for the existence of tangent functionals for convex sets). A unification
of these ideas and techniques can be found in a recent paper of Brezis and Browder i 7
One major topic developed from the study in this project is that of the deter-
mination of invariant sets for solutions to semilinear equations. We state the
fundamental abstract result first and then indicete its applicability by considering
a nonlinear system of parabolic equations. Suprose that X is a Banachi space with
norm denoted by ‘| and that T = {T(t,s) : t > 8 > 0} is a family of bounded

linear operators from X into X that satisfy the following properties:

(T1) T(t,t) = I and T(t,s)T(s,r) = T(t,r) for all t >s >r > 0.

(T2) The map (t,s) » T(t,s)x is continuous from {(t,s) : t > s > 0} into

X for each x € X.




Suppose also that D 1is a closed subset of [0,s) x X and that if

Dt z {x€Xx: (t,x) €D}, then Dt is nonempty for all t > 0. Now let B be a
continuous function from D into X and a a continuous function from (0,=)
into X. For each (s,z) € D we consider the existence of solutions to the

integral equation

t
(IF) u(t) = T(t,s)(z - a(s)) + alt) + J T(t,r)B(r, u(r))ar, t > s.
8

If 6 > 0, a continuous function u : [s, s + ) + X is said to be a solution to
(IE) on [s, s + 8§) if (t, u(t)) €D forall t€ [s, s +8) and u satisfies

(IE) for each t € (s, 8 + §). We have the following basic result on the local

existence of solutions to (IE) (recall that d(x;E) = inf{|x - y| : y € E} for each

x€ X and ECX).

Theorem 2 [4]. In addition to the conditions enumerated in the above paragraph

suppose that either
(a) T(t,s) is compact for each t > 8 > 0

or

(b) there is a continuous, increasing function L : [0,») + [0,®») such that
|B(t,x) - B(s,y)| < L(t)(|t - 8] + |[x = y|) for a1 (t,x), (t,y) €D
with t > s.

Then the following statements are equivalent:

(1) For each (8,z2) € D there is a & = §(s,z) > 0 such that (IE) has a

solution u on (s, s + §).

(11) 1im 4nf a(T(t + h, t)(z + a(t)) + a(t + h) + hB(t,z); D, )/h=0

h+ 0+ *h
for all (t,z) € D.




Investigations concerning the global existence of solutions to (IE) may be
carried out using the usual techniques. In fact, if (b) in Theorem 2 holds and
also (ii) is satisfied, then each solution to (IE) is unique and the noncontinuable
solution exists on [s,®) for each (s,z) € D. Several basic results along the
lines of Theorem 2 may be found in the book (5, Chapter VIII]. Also, this book
contains several examples illustrating these ideas (see Chapter VIII and IX of [5]).
In order to illustrate the applicability of Theorem 2, we consider a system
of two semilinear parabolic equations. So suppose that Q is a smooth bounded domain
in Bn , that f and g are continuous functions from Rz into R, that A is

the Laplacian operator on §, and consider the system

’ u, (t,x) = adut,x) + £(u(t,x), v(t,x)
ut(t.x) = bAv{t,x) + glul{t,x), vit,x)) forall t >0, x€Q
(ps) 4 y € a0
u(0,x) = uo(x). v(0,x) = VO(X)
g u(t,y) = 8(y), vit,y) = y(y)

wvhere a,b > O, LA A R+ R are continuous, and B,y : 30 =+ R are continuous.

The existence and behavior of solutions to the parabolic system can be effectively
studied by using abstract techniques, and we give a brief indication of these ideas
here (see also |L] and [5, Chapter VIII and IX]). Suppose that 1 < p < ® and that

2y
/

X 1is the Banach space LF z LP(Q; ® of all measurable functions

o= (0.9,) : 0 ®°  such that

Tell. = (IQ [40x)[Pax]V/? < «

P

2.
(here |[:| is some norm on R“). In this case, the "linear part" of equation (PS)
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is autonomous, so the linear evolution system T = {T(t,s) : t > s > 0} satisfies

T(t,s) = T(t ~8) for all t >s8 > 0, where for each ¢ = (01. ¢,) € ?,

t > T(t)¢ 1is the solution (u(t, ¢), v(t, *)) to the linear parabolic system

(Lps)

ut(t.x) = alu(t,x)
vt(t,x) = bAv(t,x) for all t > 0, x€ Q
and y € 3Q

u(0,x) = ¢l(x), v(0,x) = 02(1)

u(t,y) = v(t,y) = 0

The nonlinear term B is the substitution operator generated by the map (f,g)

of Rz

into Ra :

[B$)(x) = (£(¢(x)), g(é(x))) for all x€ Q and ¢ € D(B)

where D(B) = {¢ € LP : x + (£(¢(x)), g(¢(x))) is in (P}

The function a: [0,o) + LP reflects the inhomogeneous boundary conditions in (PS):

a(t) = (al(t. ), u2(t, *)) where 9.0, ¢ [0,») x @ + R are continuous and satisfy

With

r
=a (t,x) = ml(t.x)

3 %1
2 a.(t,x) = bAa,(t,x) for all t > 0, x€ 0
ot 2'7° Bl »

and y € af

a,(t,y) = 8(y), ay(t,y) =v(y)

-

T, B and a as above, consider the integral equation

W oy s




(1E-ps) (uU(t), V(t)) = T(t)((uo. vo) - (61(0. 3 F 02(0, <)) + (al(t. 3 ¥ az(t. *))
+ r T(t - r)B(U(r), V(r))dr.
o

it (U,V) 4is a solution to (IE-PS) and u(t,x) = [U(t)](x) and w(t,x) = [V(t)]l(x)
for all t >0 and x € 3, then (u,v) is called a mild [P-solution to (PS).
Theorem 2 may be applied to the integral equation (IE-PS), and hence give informa-
tion on the behavior of solutions (or mild LP-solutions) to (PS). We indicate the

following two important examples:

Example 1. Suppose that a = b and that A is a closed, bounded, convex subset
of R° such that (uo(x), vo(x)), (B(y), Y(y)) €A for a1l x€ Q and y € 3Q.
Suppose further that for each (Eo, no) € A there is a solution t -+ (£(t), n(t))

to the ordinary differential equation

g'(t) = £(g(t), n(t))  €(0) = g
(ODE)
n'(t) = g(&(t), n(t))  n(0) = n_

such that (g(t), n(t)) € A for a1l t > 0 (i.e. A is positively invariant for
(ODE)). Then (PS) has a mild LP-solution (u,v) such that (u(t,x), v(t,x)) € A
for all t > 0 and x € 1. This result follows from Theorem 2 by taking

D= [0,®) x Kb(A) vhere Ki(A) ={¢elP:¢(x)er a.e. xe€al.

In Example 1 it is crucial to require that a = b. However, using differential

inequalities this requirement can be removed as is indicated by our second example.

2

Example 2. Suppose that P = (P, P,) : [0,) x @+ R” is an upper solution to

(p8):

X 2




10

r

d

3¢ Py (tax) 2 aldP (t,x) + £(P(t,x))

(t,x) > baP,(t,x) + g(P(t,x)) for all t > 0, x € Q
and y € a3

9
3 T2
P,(0,x) > u (x), P,(0,x) > v (x)

Pl(toY) :_5(y’: Pz(taY) Z.Y(y)

and that Q = (Ql, Q2) : [0,0) x Q@ » ]R2 is a lower solution to (PS) (that is, Ql

and Q2 satisfy analogous inequalities as Pl and P2 with ">" replaced by "<").

Suppose further that

g, =10, and §, 2 n, implies f(g,, £,) > £(n;, n,)
and
13

LN end g, =n, implies (&), £,) 2 &lngs "2)'

Then there is a mild [P-solution (u,v) to (PS) such that
Q, (t,8) < ult,x) < P,(t,x) and Q,(t,x) < v(t,x) < P,(t,x)

for all t >0 and x€ Q.

This result follows from Theorem 2 by defining D C [0,®) x LP by (t,¢) € D only

in case t > 0 and Qi(t,x) 101(1:) _<_Pi(t.x) for x€Q and 1 =1,2.

Further examples indicating the range of applicability of Theorem 2 and related
abstract theorems may be found in [5, Chapter VIII and IX]. Moreover, in [2], an
abstract theorem is presented that applies to (PS) when the gradients of the unknowns

appear in the nonlinear terms. For example, consider the system

s e e

‘\“\
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§ ut(t,x) = adu(t,x) + f(u(t,x), v(t,x), vu(t.x), ¢vit,x))
Vt(t,l) - bAV(t’x) + B(U(tox): V(t’x)"7u(ttx)"7v(t’x))
(ps)' ¢

u(0,x) = uo(x). v(0,x) = vo(x)

u(t,y) = 0, v(t,y) =0

where t > 0, x€ Q, and y € 3Q. Also, "9" is the gradient with respect to the
variable x € @, and hence f and g are continuous functions from 112 x R® x o

into R.

Example 3. In addition to the conditions in the above paragraph, suppose that
a = b end that there is & closed, bounded, convex subset A of 1%2 such that
(0,0) € A and that there are numbers L > 0 and 6 € [0,2) such that

e ¥,

8
(w) If(El. s Tys ny)| < L(1 + In | + |n2|) for all &,,6, € R, ny,n,

- a n n n
Suppose further that if § (El, £,) €Ay m (“1)1' t= (‘1)1 € R and

n n
1im d(g + n( } Nys ) ;)i A)/B =0
>0 i=] i=1

then

lim d(E + h(f(E'n’C)) S(E.n;C)); A)/n = 0.
h*0+

Then if (uo(x), vo(x)) €A for all x € 0, there is a mild [P-solution (u,v)

to (P8)' on [0,») x @ such that (u(t,x), v(t,x)) €A for all t >0 and x€ Q.

The results of [2] can also be applied to obtain criteria for the stability of

solutions to (PS)' as well (see Remark 7 of [2]). As an example, suppose that ()
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in Example 3 is satisfied and also that there are numbers Rl'RZ >0 and w >0

such that if (zl, s:a) € (o, R1] x [0, 32] then

(a) if [51[ = m&xfl&l[, Iazl} then f(£,, £,, 8, ) _<_-u[£1[ for all
t € R*,
(b) if l52| = w{lzll, Izzl} then g(£;, £y, N, 6) _<_-u|€2| for all

ne R%.

Then for each (uo, vo) such that (uo(x), vo(x)) € [o, Rll x [0, R2] there is a

mild LP-solution (u,v) to (PS)' on [0,) x @ such that

ess sup max{|u(t,x)|, [v(t,x)[} g,e'mt ess sup max{[uo(x)l, [v(x)|}
X € Q x € N

for all t > O.

As one final comment we remark that the techniques used in each of our examples

apply to systems of m equations and m unknowns for any integer m > 1.
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